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Chapter Title: 

 

Quantitative Data Analysis in Finance 

 

Xiang Shi, Peng Zhang and Samee U. Khan 

 

Abstract: Quantitative tools have been widely adopted in order to extract the 

massive information from a variety of financial data. Mathematics, statistics and 

computers algorithms have never been so important to financial practitioners in 

history. Investment banks develop equilibrium models to evaluate financial in-

struments; mutual funds applied time series to identify the risks in their portfolio; 

and hedge funds hope to extract market signals and statistical arbitrage from noisy 

market data. The rise of quantitative finance in the last decade relies on the devel-

opment of computer techniques that makes processing large datasets possible. As 

more data is available at a higher frequency, more researches in quantitative fi-

nance have switched to the microstructures of financial market. High frequency 

data is a typical example of big data that is characterized by the 3V’s: velocity, va-

riety and volume. In addition, the signal to noise ratio in financial time series is 

usually very small. High frequency datasets are more likely to be exposed to ex-

treme values, jumps and errors than the low frequency ones. Specific data pro-

cessing techniques and quantitative models are elaborately designed to extract in-

formation from financial data efficiently.  

In this chapter, we present the quantitative data analysis approaches in finance. 

First, we review the development of quantitative finance in the past decade. Then 

we discuss the characteristics of high frequency data and the challenges it brings. 

The quantitative data analysis consists of two basic steps: (i) data cleaning and ag-

gregating; (ii) data modeling. We review the mathematics tools and computing 

technologies behind the two steps. The valuable information extracted from raw 

data is represented by a group of statistics. The most widely used statistics in fi-

nance are expected return and volatility, which are the fundamentals of modern 

portfolio theory. We further introduce some simple portfolio optimization strate-

gies as an example of the application of financial data analysis.  

Big data has already changed financial industry fundamentally; while quantita-

tive tools for addressing massive financial data still have a long way to go. Adop-

tions of advanced statistics, information theory, machine learning and faster com-

puting algorithm are inevitable in order to predict complicated financial markets. 

These topics are briefly discussed in the later part of this chapter.  

 

 

  

Xiang Shi, Ph.D. 

Stony Brook University, Stony Brook, NY 11794, USA 

e-mail: xiang.shi@stonybrook.edu  

 

Peng Zhang, Ph.D.  

Stony Brook University, Stony Brook, NY 11794, USA 

e-mail: peng.zhang@stonybrook.edu 

 

Samee U. Khan, Ph.D. 

North Dakota State University, Fargo, ND 58108, USA 

e-mail: samee.khan@ndsu.edu  

mailto:xiang.shi@stonybrook.edu
mailto:peng.zhang@stonybrook.edu
mailto:samee.khan@ndsu.edu


2  

1. Introduction 

1.1 History of Quantitative Finance 

The modern quantitative finance or mathematical finance is an important field 

of applied mathematics and statistics. The major task of it is to model the finance 

data, evaluate and predict the value of an asset, identify and manage the potential 

risk in a highly scientific way. One can divide the area of quantitative finance into 

two distinct branches based on its tasks, (Meucci 2011). The first one is called the 

“ℚ” area, which serves to price the derivatives and other assets. The character “ℚ” 

denotes the risk-neutral probability. The other one is the “ℙ” area, which are de-

veloped to predict the future movements of the market. The character “ℙ” denotes 

the “real” probability of the market. 

The first influential theory in quantitative finance is the Black-Scholes option 

pricing theory. Unlike public equities that are frequently traded in the market, de-

rivatives like options often lack liquidity and are hard to be evaluated. The theory 

was initiated by (Merton 1969) who applied continuous time stochastic models to 

get the equilibrium price of equity. (Black and Scholes 1973) derive an explicit 

formula for option pricing based on the idea of arbitrage free market. This formu-

la, as (Duffie 2010) called, is “the most important single breakthrough” of the 

“golden age” of the modern asset pricing theory. Following works by (Cox and 

Ross 1976), (Cox, Ross et al. 1979) and (Harrison and Kreps 1979) form the foot-

stone of the “ℚ” area. The theory is most widely applied in sell-side firms and 

market makers like large investment banks. Today the Black-Scholes formula is 

the core curriculum of any quantitative programs in university. The fundamental 

mathematical tools in this area are Ito’s stochastic calculus, partial differential 

equation and modern probability measure theory developed by Kolmogorov. The 

security and the derivatives are often priced individually, thus high dimensional 

problems are often not considered in classical “ℚ” theories.  

Unlike the “ℚ” theory which focuses on measuring the present; the goal of the 

“ℙ” area is to predict the future.  Financial firms who are keen on this area are of-

ten mutual funds, hedge funds or pension funds. Thus the ultimate goal of the “ℙ” 

area is portfolio allocation and risk management. The foundation of the “ℙ” world 

is the modern portfolio theory developed by (Markowitz 1952). The idea of Mar-

kowitz’s theory is that any risk-averse investor tends to maximize the expected re-

turns (alpha) of his portfolio while the risk is under control. Other important con-

tributions to this area are the capital asset pricing model (CAPM) introduced by 

(Treynor 1961), (Sharpe 1964), (Lintner 1965) and (Mossin 1966).  

Financial data is fundamentally discrete in nature. In the “ℚ” area, asset prices 

are usually approximated by a continuous-time stochastic process so that one can 

obtain a unique equivalent risk-neutral measure. The continuous-time process, 

however, has difficulties in capturing some stylized facts in financial data such as 

mean-reverting, volatility clustering, skewness and heavy-tailness unless highly 

sophisticated theories are applied to these models. Thus the “ℙ” area often prefers 

https://www.researchgate.net/publication/4975920_Martingales_and_Arbitrage_in_Multi-Period_Security_Markets?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/238362211_Toward_a_Theory_of_the_Market_Value_of_Risky_Assets?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/24107394_The_Pricing_of_Options_And_Corporate_Liabilities?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/235926747_Capital_Asset_Prices_A_Theory_of_Market_Equilibrium_Under_Conditions_of_Risk?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/4978679_Option_Pricing_A_Simplified_Approach?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/228232466_'P'_Versus_'Q'_Differences_and_Commonalities_between_the_Two_Areas_of_Quantitative_Finance?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/268618280_Dynamic_Asset_Pricing_Theory?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/259479989_Equilibrium_in_a_Capital_Asset_Market?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
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discrete-time financial econometric models that can address these problems more 

easily than their continuous-time counterparties. (Rachev, Mittnik et al. 2007) 

suggest that there are three fundamental factors that make the development of fi-

nancial econometrics possible, which are: “(1) the availability of data at any de-

sired frequency, including at the transaction level; (2) the availability of powerful 

desktop computers and the requisite IT infrastructure at an affordable cost; and 

(3) the availability of off-the- shelf econometric software.”  

Furthermore, most problems in the “ℙ” area are high dimensional. Portfolio 

managers construct their portfolios from thousands of equities, ETFs or futures. 

Dependence structure among these risky assets is one of the most important topics 

in the “ℙ” world. Traditional statistics are challenged by these high dimensional 

financial data and complicated econometric models.  

Thus the big data together with related techniques is the foundation of the “ℙ” 

world, just like coal and petroleum that make the industrialization possible. And 

the technologies behind big data become more important as the development of 

high frequency trading. Just a decade ago, the major research in the “ℙ” area was 

based on the four prices: Open, High, Low, Close (OHLC) that are reported at the 

end of each day. Data at higher frequency was not provided or even kept by most 

of the exchanges. For example, commodity trading floors did not keep intraday 

records for more than 21 days until 6 years ago, (Aldridge 2015). Comparing to 

the low frequency OHLC data, the high frequency data is often irregularly spaced, 

and exhibits stronger mean-reverting and periodic patterns. A number of research-

es in econometrics have switched to the high frequency area. As an example, we 

use the keywords “financial econometrics” and “high frequency” to search related 

publications on Google Scholar®. To compare we also search the results of “fi-

nancial econometrics” only. Figure 1 plots the number of the publications during 

each period.  

One can observe that there is a tremendous growth of financial econometrics 

publications over the past decade. The percentage of the papers related to high 

frequency data is about 13% in 1990-1994 periods. This number increases to 

about 34% and 32% in 2005-2009 and 2010-2014 periods. Figure 1 is also an evi-

dence of the growing importance of the big data in finance; since the high fre-

quency data is a typical example of big data that is characterized by the 3Vs: ve-

locity, variety and volume. We discuss these concepts in depth in the following 

section.  
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Figure 1: Number of publications related to high frequency econometrics on Google 
Scholar® (Data source: Google Scholar®) 

 

1.2 Compendium of Terminology and Abbreviations 

Briefly, we summarize the terminology and abbreviations in this chapter: 

 

Algorithmic trading strategy refers to a defined set of trading rules executed 

by computer programs.  

Quantitative data analysis is a process of inspecting, cleaning, transforming, 

and modeling data based on mathematical models and statistics.  

Moore’s law is the observation that the number of transistors in a dense inte-

grated circuit doubles approximately every two years. 

Equity is a stock or any other security representing an ownership interest. In 

this chapter, the term “equity” only refers to the public traded ones. 

High frequency data refers to intraday financial data in this chapter.  

ETF refers to exchange traded fund, is a marketable security that tracks an in-

dex, a commodity, bonds, or a basket of assets like an index fund. 

Derivative refers to a security with a price that is dependent upon or derived 

from one or more underlying assets. 

Option refers to a financial derivative that represents a contract sold by one 

party (option writer) to another party (option holder). The contract offers the buyer 

the right, but not the obligation, to buy (call) or sell (put) a security or other finan-

cial asset at an agreed-upon price (the strike price) during a certain period of time 

or on a specific date (exercise date). 
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Buy side is the side of the financial industry comprising the investing institu-

tions such as mutual funds, pension funds and insurance firms that tend to buy 

large portions of securities for money-management purposes. 

Sell side is the part of the financial industry involved with the creation, promo-

tion, analysis and sale of securities. Sell-side individuals and firms work to create 

and service stock products that will be made available to the buy side of the finan-

cial industry. 

Bid price refers to the maximum price that a buyer or buyers are willing to pay 

for a security.  

Ask price refers to the minimum price that a seller or sellers are willing to re-

ceive for the security. A trade or transaction occurs when the buyer and seller 

agree on a price for the security. 

 

Table 1: List of Abbreviations 

TAQ data Trade and quote data 

OHLC Traditional open, high, low, close price data 

HFT 

MLE 

High frequency trading 

Maximum likelihood estimator 

QMLE Quasi-maximum likelihood estimator 

PCA Principle component analysis 

EM Expectation maximization 

FA Factor analysis 

ETF Exchange traded fund 

NYSE New York stock exchange 

AR Autoregressive model 

ARMA Autoregressive moving average model 

GARCH Generalized autoregressive conditional heterosce-

dasticity model 

ACD Autoregressive conditional duration 

 

 

2. The Three V’s of Big Data in High Frequency Data 

Big data is often described by the three V’s: velocity, variety and volume, all of 

which are the basic characteristics of high frequency data. The three V’s bring 

both opportunities and difficulties to practitioners in finance (Fang and Zhang 

2016). In this section we introduce the concept, historical development and chal-

lenges of high frequency data.  
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2.1 Velocity 

Telling about the velocity of the high frequency data seems to be tautology. 

Over the past two decades, the financial markets adopt computer technologies and 

electronic systems. This leads to a dramatic change of the market structure. Before 

1970s, the traditional market participates usually negotiate their trading ideas via 

phone calls. Today most of jobs of the traditional traders and brokers are facilitat-

ed by computers, which are able to handle tremendous amount of information in 

an astonishing speed. For example, the NYSE TAQ (Trade and Quote) data was 

presented in seconds’ timestamp when it was first introduced in 1997. This was al-

ready a huge advance comparing to the pre 1970s daily data. Now the highest fre-

quency of the TAQ data is in millisecond, which is a thousand of a second. Fur-

thermore, a stock can have about 500 quote changes and 150 trades in a 

millisecond. No one would be surprised if the trading speed would grow even 

faster in the near future because of Moore’s law. As a result, even traditional low 

frequency traders may need various infrastructures, hardware and software tech-

niques to reduce their transaction costs in their transactions. The high frequency 

institutions, on the other side, are willing to invest millions of dollars not only on 

computer hardware but also on real estate; since 300 miles closer to the exchange 

will provide about one millisecond advantage in sending and receiving orders. 

 

2.2 Variety 

 With the help of electronic systems the market information can be collected 

not only in higher frequency but also in a greater variety. Traditional price data of 

a financial instrument usually consists of only 4 components: open, high, low, 

close (OHLC). The microstructure of the price data is fundamentally different 

with the daily OHLC, which are just 4 numbers out of about ten thousands trade 

prices of equity in a single day. For example, the well-known bid-ask spread 

which is the difference between the highest bid price and the lowest ask price is 

the footstone of many high frequency trading strategies. The level 2 quote data al-

so contains useful information can be used to identify buy/sell pressure. Another 

example is the duration, which measures how long it takes for price change, can 

be used to detect the unobservable good news in the market. (Diamond and 

Verrecchia 1987) and (Easley and O'hara 1992) suggest that the lower the dura-

tions, the higher probability of the presence of the good news when the short sell-

ing is not allowed or limited. Together with the trade volume, the duration can al-

so be a measurement of market volatility. (Engle and Russell 1998) first found the 

intraday duration curve that indicated the negative correlation with the U-shaped 

volatility pattern. 

 

https://www.researchgate.net/publication/4977898_Constraints_on_Short-Selling_and_Asset_Price_Adjustment_to_Private_Information?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/4977898_Constraints_on_Short-Selling_and_Asset_Price_Adjustment_to_Private_Information?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/245577570_Autoregressive_conditional_duration_A_new_model_for_irregularly_spaced_transaction_data?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/4768180_Time_and_the_Process_of_Security_Price_Adjustment?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
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2.3 Volume 

Both velocity and variety contributes to the tremendous volume of the high fre-

quency data. And that amount is still growing. The total number of transactions in 

the US market has been increased by 50 times in the last decade. If we assume that 

there are about 252 trading days in each year, then the number of quotes observed 

on November 9, 2009, for SPY alone would be greater than 160 years of daily 

OHLC and volume data points, (Aldridge 2009). Not only the number of records, 

but also the accuracy is increasing. The recent TAQ prices are truncated to five 

implied decimal places comparing to the two decimal digits of the traditional daily 

price data. The size of one-day trade data is about 200MB on average; while the 

quote data is about 30 times larger than the trade data. Most of these records are 

contributed by the High Frequency Trading (HFT) companies in US. For example, 

in 2009 the HFT accounted for about 60~73 % of all US equity trading volume 

while the number of these firms is only about 2% overall operating firms, (Fang 

and Zhang 2016). 

 

2.4 Challenges for High Frequency Data 

Like most Big Data, high frequency data is a two-sided sword. While it carries 

a great amount of valuable information; it also brings huge challenges to quantita-

tive analyst, financial engineers and data scientists. First of all, most high frequen-

cy data are inconsistent. These data are strongly depended on the regulations and 

procedures of the institution that collects them, which varies for different periods 

and different exchanges. For example, the bid-ask spreads in NYSE are usually 

smaller than the ones in other exchanges. Moreover, a higher velocity in trading 

means a larger likelihood that the data contains wrong records. As a result, some 

problematic data points should be filtered out the raw data; and a fraction of the 

whole data can be used in practice.  

Another challenge is the discreteness in time and price. Although all financial 

data are discrete, many of them can be approximately modeled by a continuous 

stochastic process or a continuous probability distribution. The classical example 

of Black Scholes formula is based on the assumption of geometric Brownian mo-

tion price process. However this is not the case for high frequency data. The tick 

data usually falls on a countable set of values. Figure 2 plots the histogram of the 

trade price changes of IBM on Jan 10, 2013. There are about 66% of the prices are 

the same as the previous one. And about 82% of the price changes fall in -1 to 1 

cent. Similar observation can be found in (Russell, Engle et al. 2009). Another 

property of high frequency data is the bid-ask bounce. Sometimes it can be ob-

served that the prices frequently back and forth between the best bid and ask price. 

This phenomenon introduces a jump process that differs with many traditional 

models. Furthermore, the irregularly spaced data makes it difficult to be fitted by 

most continuous stochastic processes that are widely used in modeling daily re-

turns. The problem becomes even harder in high dimension, since the duration 

pattern varies in different assets. 

https://www.researchgate.net/publication/285645252_Analysis_of_High-Frequency_Data?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
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Figure 2: Histogram of the trade price changes of IBM on Jan 10, 2013 

 

3. Data Cleaning, Aggregating and Management 

Cleaning data is the first step of any data analysis, modeling and prediction. 

The raw data provided by data collectors is referred as dirty data, since it contains 

inaccurate or even incorrect data point almost surely. In addition data cleaning is 

sometimes followed by data aggregation that generates data with a desired fre-

quency. The size of data is often significantly reduced after the two steps. Thus 

one can extract useful information from the cleaned data in a great efficiency.  

In this section we take NYSE TAQ data as an example. Table 2 lists the details 

of daily TAQ files. The information is available on http://www.nyxdata.com/Data-

Products/Daily-TAQ. 

 

 
Table 2 Daily TAQ file details (Source: https://www.nyxdata.com/doc/243156.) 

https://www.nyxdata.com/doc/243156
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3.1 Data Cleaning 

As we have discussed in the previous section, most of high frequency data con-

tains certain errors. Some of them can be detected simply by plotting all the data 

points. Figure 3 plots all the trade prices of IBM on Jan 10, 2013. The trades not 

happened in regular market hours (9:30 AM to 4:00 PM) are also included in the 

dataset. This kind of data lacks liquidity and contains more outliers than the oth-

ers; and therefore they are not considered in most data analysis. But one can also 

observe that there are several abnormal outliers within the regular hours. 

 

 

Figure 3: the trade prices of IBM on Jan 10, 2013 
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We introduce several numerical approaches for cleaning high frequency data. 

The first step is to filter out the data that potentially have lower quality and accu-

racy. For example, (Brownlees and Gallo 2006) suggest removing non-NYSE 

quotes in TAQ data; since NYSE records usually have less outlier than the non-

NYSE ones as shown by (Dufour and Engle 2000). In addition, the data record 

that were corrected or delayed should also be removed. These kinds of infor-

mation about data condition and location are listed in COND, CORR and EX col-

umns in the TAQ data, see (Yan 2007) for details.  

Consider a price sequence Error!  Bookmark not defined. �  where 𝑖 =
1,2, …𝑁 with length (Brownlees and Gallo 2006) propose the following algorithm 

for removing outliers: 

I(|𝑝𝑖 − 𝑝̅𝑖(𝑘)| < 3𝑠𝑖(𝑘) + 𝜙) = {
true, observation 𝑖 is kept.
false, observation 𝑖 is removed.

f  

where 𝑝̅𝑖(𝑘) and 𝑠𝑖(𝑘) are the 𝛼-trimmed mean and standard deviation of a neigh-

borhood of 𝑘 observations and 𝜙 is a positive number called granularity parame-

ter. 𝜙 is to prevent 𝑝𝑖  to be removed when 𝑠𝑖(𝑘) = 0. As we have seen in Figure 2 

high frequency data often contains many equal prices. 𝛼 is a percentage number. 

For example, a 10%-trimmed mean and standard deviation are the average of the 

sample excluding the smallest 10% and the largest 10% numbers. Thus outliers 

and unreasonable data points have less impact on the trimmed statistics. Median 

can be viewed as a fully trimmed mean. (Mineo and Romito 2007) propose a 

slightly different algorithm: 

If (|𝑝𝑖 − 𝑝̅−𝑖(𝑘)| < 3𝑠−𝑖(𝑘) + 𝜑) = {
true, observation 𝑖 is kept.
false, observation 𝑖 is removed.

 

where 𝑝̅−𝑖(𝑘) and 𝑠−𝑖(𝑘) are the 𝛼  -trimmed mean and standard deviation of a 

neighborhood of 𝑘 observations excluding 𝑝𝑖 . (Mineo and Romito 2008) apply 

both algorithms to the ACD model and conclude that the performances of the two 

algorithms are very similar, while the second one might be better in modeling the 

correlations of model residuals. 

The 𝛼-trimmed mean and standard deviation are the robust estimates of the lo-

cation and dispersion of a sequence. The robustness depends on the choice of 𝛼. 

Prior knowledge of the percentage of outliers in the data is required in order to 

find the best 𝛼. The optimal 𝛼 of each asset would be different. In some cases the 

𝛼-trimmed mean and the standard deviation can be replaced by the following sta-

tistics: 

𝑝̅𝑖(𝑘) = median{𝑝𝑗}𝑗=𝑖−𝑘,…,𝑖+𝑘 

𝑠𝑖(𝑘) = 𝑐 ∙ median{|𝑝𝑗 − 𝑝̅𝑖(𝑘)|}𝑗=𝑖−𝑘,…,𝑖+𝑘 

where 𝑐 is a positive coefficient. Outlier detecting algorithms with above statistics 

are sometimes called Hampel filter that is widely used in engineering. The second 

equation can be generalized by replacing the median by quartile with certain level. 

The median based 𝑝̅𝑖(𝑘) and 𝑠𝑖(𝑘) are also more robust than the trimmed ones 

A very important issue the data cleaning approaches is that the volatility of the 

cleaned data depends on the choice of methods and corresponding parameters. The 

https://www.researchgate.net/publication/228421645_Different_Methods_to_Clean_Up_Ultra_High-Frequency_Data?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/222545040_Financial_econometric_analysis_at_ultra-high_frequency_Data_handling_concerns?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/222545040_Financial_econometric_analysis_at_ultra-high_frequency_Data_handling_concerns?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
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volatility of many high frequency data, including equity and currency, exhibits 

strong periodic patterns. The outlier detection algorithms with moving window 

can potentially diminish or remove these patterns that are important in prediction 

and risk control. Thus it is crucial to consider the periodic behavior before using 

above algorithms directly. One way is to apply robust estimates of volatility to raw 

data and then remove this effect via certain adjustment. We discuss this problem 

in Section 4.1. 

 

3.2 Data Aggregating 

Most econometric models are developed for equally spaced time series, while 

most high frequency data are irregular spaced and contains certain jumps. In order 

to apply these models to the high frequency data, some aggregating techniques are 

necessary for generating equally spaced sequence from the raw data. Consider a 

sequence {(𝑡𝑖 , 𝑝𝑖)} where 𝑖 = 1,… , 𝑁, 𝑡𝑖 is time step and 𝑝𝑖  is trade or quote price. 

Given an equally-spaced time stamps {𝜏𝑗}  where 𝑗 = 1,… ,𝑀  and 𝜏𝑗 − 𝜏𝑗−1 =

𝜏𝑗+1 − 𝜏𝑗 for all 𝑗, a simple but useful way to construct a corresponding price se-

ries {𝑞𝑗} where 𝑗 = 1,… ,𝑀 is to take the previous data point: 

𝑞𝑗 = 𝑝𝑖𝑙𝑎𝑠𝑡  

where 𝑖𝑙𝑎𝑠𝑡 = max{𝑖|𝑡𝑖 ≤ 𝜏𝑗, 𝑖 = 1, … , 𝑁}. This approach is called last point inter-

polation. It assumes that the price would not change before the new data come in. 

(Gençay, Dacorogna et al. 2001) propose a linear interpolation approach: 

𝑞𝑗 = 𝑝𝑖𝑙𝑎𝑠𝑡 + (𝑝𝑖𝑛𝑒𝑥𝑡 − 𝑝𝑖𝑙𝑎𝑠𝑡)
𝜏𝑗 − 𝑡𝑖𝑙𝑎𝑠𝑡
𝑡𝑖𝑛𝑒𝑥𝑡 − 𝑡𝑖𝑙𝑎𝑠𝑡

 

where 𝑖𝑛𝑒𝑥𝑡 = min{𝑖|𝑡𝑖 ≥ 𝜏𝑗 , 𝑖 = 1, … , 𝑁}. The second method is potentially more 

accurate than the first one, but one should be very careful when use it in practice, 

especially in back-testing model or strategies; since it contains the future infor-

mation 𝑝𝑖𝑛𝑒𝑥𝑡 which is not available at 𝜏𝑗.  

There are several ways to deal with the undesirable jumps caused by bid-ask 

bounce. The most widely used approach is to replace the trade prices by the mid-

quote prices. Let {(𝑡𝑖
𝑏 , 𝑝𝑖

𝑏)} where 𝑖 = 1,… , 𝑁𝑏 and {(𝑡𝑖
𝑎, 𝑝𝑖

𝑎)} where 𝑖 = 1,… , 𝑁𝑎 

be the best bid and ask prices together with their time stamps. The mid-quote price 

is given by 

𝑝𝑖 =
1

2
(𝑝
𝑖𝑏
𝑏 + 𝑝𝑖𝑎

𝑎 ) 

where 

𝑡𝑖 = max{𝑡𝑖𝑏
𝑏 , 𝑡𝑖𝑎

𝑎 } 

𝑖𝑏 = min{𝑖|𝑡𝑖
𝑏 > 𝑡𝑖−1, 𝑖 = 1, … , 𝑁

𝑏} 

𝑖𝑎 = min{𝑖|𝑡𝑖
𝑎 > 𝑡𝑖−1, 𝑖 = 1, … , 𝑁

𝑎} 
 

Another approach is to weight the bid and ask by their sizes 𝑠𝑖
𝑏 and 𝑠𝑖

𝑎 
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𝑝𝑖 =
𝑠
𝑖𝑏
𝑏 ∙ 𝑝

𝑖𝑏
𝑏 + 𝑠𝑖𝑎

𝑎 ∙ 𝑝𝑖𝑎
𝑎

𝑠
𝑖𝑏
𝑏 + 𝑠𝑖𝑎

𝑎
 

Once we get an equal time spaced price series {𝑞𝑗} where 𝑗 = 1,… ,𝑀, we are 

able to calculate the log returns of the asset: 

𝑟𝑗 = log
𝑞𝑗

𝑞𝑗−1
 

In high frequency data, the price difference is usually very small. Thus the log 

returns would be very close to the real returns 

𝑟𝑗 ≈
𝑞𝑗 − 𝑞𝑗−1

𝑞𝑗−1
 

There are several good reasons to consider the log returns instead of the real re-

turns in financial modeling. First it is symmetric with respect to the up and down 

of the prices. If the price increases 10% and decreases 10% in terms of the log re-

turn, then it will remain the same. The real return can exceed 100% but cannot be 

lower than -100% while the log return does not have this limit. Furthermore the 

cumulative log returns can be simply represented as the sum of the log returns; 

this fact would be very helpful in applying many linear models to the log returns.  

The last thing we want to mention here is that the size of overnight returns in 

equity market is often tremendous comparing to the size of intraday returns. The 

currency market does not have that problem. Overnight returns in equity market 

are often considered as outliers and removed from the data in most applications. 

One can also rescale these returns since they may contain useful information. But 

different methods in rescaling overnight returns might affect the performance of 

model and strategy. 

 

3.3 Scalable Database and Distributed Processing 

Cleaning and aggregating high-volume data always needs a big data infrastruc-

ture that combines a data warehouse and a distributed processing platform. To ad-

dress the challenges of such big data infrastructure with emerging computing mul-

tisource platforms such as heterogeneous architectures and Hadoop with emphasis 

on addressing data-parallel paradigms, people have extensively been working on 

various aspects, such as scalable data storage and computation management of big 

data, multisource streaming data processing and parallel computing, etc. 

Database is an essential datastore for high-volume finance data such long-term 

historical market data sets. In data management, the column-based database like 

NoSQL and in-memory database are replacing the traditional relational database 

management system (RDBMS) in financial data-intensive applications. RDBMS 

is database based on the relational model and it has been used for decades in in-

dustry. Although it is ideal for processing general transactions, RDBMS is less ef-

ficient in processing enormous structured and unstructured data, for examples, for 

market sentiment analysis, real-time portfolio and credit scoring in modern finan-

cial sector. Usually, these financial data are seldom modified but their volume is 
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overwhelmed and they need to be queried frequently and repeatedly. In this, a col-

umn based database often stores time series based metadata with support of data 

compression and quick read. In this regard, the columnar databases are preferably 

suitable for time series of financial metadata. For example, when a financial engi-

neer pulls out a time series of only a few specified metrics with a specific point, a 

columnar database is faster for reading than a row-based database since only spec-

ified metrics such as OHLC are needed. In this case, a columnar database is more 

efficient because of the cache efficiency and it has no need for scanning all rows 

like in a row based database. Beyond the columnar database, the in-memory data-

base is another emerging datastore solution when performing analytics. That is, if 

the data set is frequently used and its size fits into memory, the data should persist 

in the memory for sake of data retrieving, eliminating the need for accessing disk-

mediated databases. In practice, what solution is favorable should depend on the 

practitioner’s application and available computing facilities. 

In addition to data warehouse, distributed processing is equally important. Ha-

doop often works on Big Data for financial services (Fang and Zhang 2016). Ha-

doop refers to a software platform for distributed datastore and distributed pro-

cessing on a distributed computing platform such as a computer cluster. Hadoop is 

adopted for handling the big data sets for some financial services such as fraud de-

tection, customer segmentation analysis, risk analytics and assessment. In these 

services, the Hadoop framework helps to enable a timely response. As a distribut-

ed data infrastructure, Hadoop does not only include a distributed data storage 

known as HDFS, Hadoop Distributed File System, but it also offers a data-parallel 

processing scheme called as MapReduce. However, Hadoop, as a tool, is not a 

complete big data solution and it has its limitations like everything. For example, 

it is inefficient to connect structured and unstructured data, unsuitable for real-

time analytics, unable to prioritize tasks when multiple tasks are running simulta-

neously in distributed computing platforms, and its performance closely depends 

on the scalability of a distributed file system which in turn limits this architecture. 

Apache Spark, on the other hand, is a data-processing tool and it operates on dis-

tributed data storage. Spark does not provide a distributed data storage like HDFS 

so it needs to be integrated with one distributed data platform. It can run on top of 

HDFS or it can process structured data in Hive. Spark is an alternative to the tradi-

tional map/reduce model that is used by Hadoop and it supports real-time stream 

data processing and fast queries. Generally, Sparks needs more RAM instead of 

network and disk-backed I/O and thus it is relatively faster than Hadoop. Spark of-

ten completes the full real-time data analytics in memory. However, as it uses 

large RAM, Spark needs a high-end machine with a large memory capacity. In the 

code development, Spark is a library for parallel processing through function calls 

and a Hadoop MapReduce program can be written by inheriting Java classes. 
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4. Modeling High Frequency Data in Finance 

In this section we discuss the mathematical models for high frequency data. 

There are a number of quantitative models with different features in financial 

econometrics. The purpose of majority of these models is to estimate expected re-

turns and volatility of a risky asset or portfolio. As we have discussed in the first 

section, expected return and volatility are the two footstones of the modern portfo-

lio theory. Expected return, sometimes called alpha, is the prediction of profit and 

loss in the future. It is the most crucial statistics for a portfolio manager. Volatility 

measures variation of value change for a financial instrument or portfolio. The be-

havior of a portfolio whose volatility is controlled properly is more consistent than 

the ones with large volatility. Thus Markowitz’s theory states that a portfolio may 

generate relatively stable revenues by maximizing its expected return and mini-

mizing the volatility. Other useful statistics and performance measures such as 

skewness, kurtosis, VaR or drawdown can also be estimated by some of the fol-

lowing models. There a number of literatures consider portfolio selection and risk 

management based on these statistics. We will not discuss them in this chapter.  

 

4.1 Volatility Curve 

The intraday market exhibits a more clearly periodic pattern especially in vola-

tility comparing to the low frequency financial data. There a number of papers 

propose different approaches to modeling the volatility of the high frequency data. 

The most common idea is to separate the volatility into deterministic seasonal part 

and stochastic part. The deterministic part is usually fitted by a smooth function, 

as (Andersen and Bollerslev 1997; Andersen, Bollerslev et al. 2000) suggest. The 

stochastic part can be modeled by ARCH type models, since (Engle and 

Manganelli 2004) discover volatility clustering effect in high frequency market. 

The volatility is often considered as a hidden factor of the market. The most 

common way to extract seasonal volatility from the data is to compute the norms 

of the absolute returns. To make it clear, let an integer 𝐾 > 0 be the period length 

and 𝑟1,𝑟2,…,𝑟𝐾𝑁 be a sequence of equally time-spaced log returns in 𝑁 periods. 

Then the seasonal realized volatility can be defined as: 

𝑣𝑖 = (
1

𝑁
∑|𝑟𝐾(𝑗−1)+𝑖|

𝑝
𝑁

𝑗=1

)

1
𝑝

, 𝑖 = 1,2, … , 𝐾 

where the exponent 𝑝 is usually set to be 1 or 2. However the above representation 

is sensitive to the outliers. The seasonal structure could be destroyed by a single 

abnormal extreme value. A more robust way is to consider the quartiles of the ab-

solute returns: 

𝑣𝑖 = quartile𝛼{|𝑟𝐾(𝑗−1)+𝑖|}𝑗=1,⋯𝑁 

where 0 ≤ 𝛼 ≤ 1. 

https://www.researchgate.net/publication/222675458_Intraday_and_Interday_Volatility_in_the_Japanese_Stock_Market?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/223321798_Intraday_Periodicity_and_Volatility_Persistence_in_Financial_Markets?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
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Seasonality with different periods can be observed from the high frequency da-

ta. As an example, (Dong 2013) considers 1-minute log returns of all the stocks in 

Russell 3000 on 2009. The period 𝐾 is set to be 390 that is the number of minutes 

in each trading day. Figure 4 plots the volatility curve together with the aggregated 

volume curves of NYSE and NASDAQ against 390 minutes. 

 

 

Figure 4: The volatility curve together with the aggregated volume curves of 

NYSE and NASDAQ against 390 minutes (Credit: (Dong 2013)) 

 

In addition (Dong 2013) discovers that there exist 5-minute spikes on the curve. 

This phenomena are more clear when we plot the volatility curve when 𝐾 = 60 

minutes (see Figure 5). Both volatility and volume exhibit the U-shape pattern but 

they are different at tails. The volatility is relatively higher at market opening and 

lower at the end. 

 

 

Figure 5: The volatility curve together with the aggregated volume curves of 

NYSE and NASDAQ against 60 minutes (Credit: (Dong 2013)) 
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To fit the volatility curve above one can use a smooth rational function, for ex-

ample: 

𝑓(𝑥) =
𝑎𝑥2 + 𝑏𝑥 + 𝑐

𝑑𝑥 + 1
 

The coefficients 𝑎, 𝑏, 𝑐, 𝑑 can be fitted by least square approach: 

min
𝑎,𝑏,𝑐,𝑑

∑(𝑣𝑖 + 𝑑𝑖𝑣𝑖 − 𝑎𝑖
2 − 𝑏𝑖 − 𝑐)2

𝐾

𝑖=1

 

and the de-seasonal log returns can be: 

𝑟̂𝐾(𝑗−1)+𝑖 =
𝑟𝐾(𝑗−1)+𝑖

𝑓(𝑖)
 

where 𝑖 = 1,2, … , 𝐾, 𝑗 = 1,2, … , 𝑁. As we have mentioned before, the volatility 

patterns may not be preserved if we apply the outlier cleaning techniques intro-

duced in Section 3.1 before computing the realized volatility. The quartile-based 

realized volatility, which is a robust estimator, can be applied directly to un-

cleaned data. Thus instead of removing outliers in the price, one can first aggre-

gate data and get an equal spaced return series with abnormal outliers. Then the 

data cleaning approach can be applied to the de-seasonal returns. 

 

4.2 Stochastic Volatility 

Despite of the deterministic periodic pattern, the volatility is stochastic and ex-

hibits volatility clustering, i.e. large returns are likely followed by large returns re-

gardless their directions, see (Engle and Manganelli 2004). Thus the generalized 

autoregressive conditional heteroscedasticity (GARCH) type models developed by 

(Engle 1982) and (Bollerslev 1986) would be a good choice to fit the stochastic 

part of the volatility. In this section we briefly introduce the idea of the GARCH 

(1,1) model. For simplicity let 𝑟𝑖 , 𝑖 = 1,2, … be the de-seasonal equally spaced log 

returns. The GARCH (1,1) model assumes that: 

𝑟𝑖 = 𝜇𝑖 + 𝜎𝑖 ∙ 𝜖𝑖 
𝜎𝑖
2 = 𝜔 + 𝛼𝑟𝑖−1

2 + 𝛽𝜎𝑖−1
2  

where 𝜔, 𝛼, 𝛽 are positive real numbers, and 𝜖𝑖 where 𝑖 = 1,2, … are i.i.d normal-

ly distributed with zero mean and unit variance. The drift term 𝜇𝑖 is the condition-

al expectation of 𝑟𝑖 given all the information up to time 𝑡. There are a lot of ap-

proaches in modeling 𝜇𝑖  that is often called 𝛼  in finance. We discuss several 

examples in Section 4.4. 

The parameters 𝜔, 𝛼, 𝛽 should satisfy the constraint 𝜔 + 𝛼 + 𝛽 ≤ 1 in order to 

make the process to be stationary. The estimation of the model is usually per-

formed by the maximum likelihood estimator (MLE). We refer to (McNeil, Frey 

et al. 2005) for details. Scientific programming languages including Matlab and R 

have matured packages for fitting the GARCH model. In practice, the 𝜔 is often a 

small number close to zero;  𝛽 ranges from 0.7 to 0.9 and 𝛼 + 𝛽 ≈ 1. 𝛼 is usually 

much smaller than 𝛽, but it plays a key role in measuring the volatility sensitivity 

to the market impact.  

https://www.researchgate.net/publication/238195651_Autoregressive_Conditional_Heteroscedasticity_With_Estimates_of_the_Variance_of_United_Kingdom_Inflation?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/5000330_CAViaR_Conditional_Autoregressive_Value_at_Risk_by_Regression_Quantiles?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/235622467_Quantitative_Risk_Management_Concepts_Techniques_and_Tools?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/235622467_Quantitative_Risk_Management_Concepts_Techniques_and_Tools?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
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4.3 Multivariate Volatility 

The simplest approach to model the dependence structure of multi-assets is to 

compute the covariance of their returns. However, the traditional sample covari-

ance is usually ill conditioned when the dimension is relatively high comparing to 

the sample size. An ill conditioned covariance matrix may lead huge errors in risk 

forecasting and portfolio optimization. The simplest way to improve the condi-

tions of the sample covariance is to adjust its eigenvalues. Another method is to 

shrink the covariance to some well-conditioned matrix. The most famous shrink-

age estimator is proposed by (Ledoit and Wolf 2003).  

The third approach, which is most widely used, is to impose certain structure 

on the covariance. For example, one can assume that a 𝑑 by 𝑑 covariance matrix 

has the expression: 

Σ = 𝐹𝐹′ + 𝐷 
where 𝐹 is a 𝑑-by-𝑛 matrix, 𝐷 is a 𝑑-by-𝑑 diagonal matrix and 𝑛 < 𝑑. The ration-

al of the above formula is that the asset return follows the linear factor model: 

𝑟 = 𝐹𝑥 + 𝜖 
where 𝑟 is the 𝑑-dimensional vector of log returns, 𝑥 is the vector of uncorrelated 

risky factors with unite variance in a lower dimension 𝑛, and 𝜖 is the uncorrelated 

errors with covariance 𝐷. Unlike the traditional factor models, the factor 𝑥 does 

not come from real data, which are usually correlated. In this model 𝑥 is some un-

correlated statistical factors that are hidden from the market. The well-known 

principle component analysis (PCA) is one way to extract 𝑥 from the original data. 

Let Σ̂ be the sample covariance matrix; by the singular value decomposition it can 

be written as: 

Σ̂ = 𝑈Λ𝑈′ 
where 𝑈 is a 𝑑-by-𝑑 unitary matrix, i.e. 𝑈𝑈′ = 𝑈′𝑈 = 𝐼, and Λ is a diagonal ma-

trix with eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑑. Then we can set 

𝑥 = Λ𝑛
−1/2

𝑈𝑛
′ 𝑟 

𝐹 = 𝑈𝑛Λ𝑛
1/2

 
where the 𝑑-by-𝑛 matrix 𝑈𝑛  consists the first 𝑛 columns of 𝑈, and the diagonal 

matrix Λ𝑛 is the first 𝑛-by-𝑛 block of Λ. In fact one can show that 𝐹 is the solution 

of: 

min
𝐹
‖Σ̂ − 𝐹𝐹′‖

2
 

where ‖∙‖2 is the induced 2-norm of a matrix. The residual matrix 𝐷 can be simp-

ly written as: 

𝐷 = diag(Σ̂ − 𝐹𝐹′) 

The PCA is a simple standard statistical tool for dimension reduction. A poten-

tially more précised approach to fit 𝐹 and 𝐷 is to apply the expectation maximiza-

tion (EM) algorithm to the log returns. This approach is also known as the factor 

analysis (FA). The standard EM algorithm for FA proposed by Rubin and Thayer 

(1982) is an iterative algorithm. Let {𝑟𝑖} where 𝑖 = 1,… , 𝑁 be a sequence of vec-
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tors of log returns and 𝐹(0), 𝐷(0) be the initial inputs. Then the 𝑘-th iteration of the 

EM is given by: 

 

E Step: Re-compute the conditional expectations: 

𝐸[𝑥|𝑟𝑖] = 𝐹
(𝑘−1)′(𝐷(𝑘−1) + 𝐹(𝑘−1)𝐹(𝑘−1)′)

−1
𝑟𝑖  

𝐸[𝑥𝑥′|𝑟𝑖] = 𝐼 − 𝐹
(𝑘−1)′(𝐷(𝑘−1) + 𝐹(𝑘−1)𝐹(𝑘−1))

−1
𝐹(𝑘−1) + 𝐸[𝑥|𝑟𝑖] ∙ 𝐸[𝑥|𝑟𝑖]′ 

 

M Step: Update 𝐹 and 𝐷: 

𝐹(𝑘) = (∑𝑟𝑖𝐸[𝑥|𝑟𝑖]

𝑁

𝑖=1

)(∑𝐸[𝑥𝑥|𝑟𝑖]

𝑁

𝑖=1

)

−1

 

 

𝐷(𝑘) =
1

𝑁
𝑑𝑖𝑎𝑔 (∑𝑟𝑖𝑟𝑖

′ − 𝐹(𝑘)𝐸[𝑥|𝑟𝑖]𝑟𝑖′

𝑁

𝑖=1

) 

 

The above algorithm will converge to the maximum likelihood estimator of 𝐹 

and 𝐷 given that 𝑥 and 𝜖 are independently Gaussian distributed. There are some 

variations of the classical EM algorithm that may improve the convergence speed, 

for example, the ECM algorithm proposed by (Meng and Rubin 1993), Donald B 

the ECME algorithm proposed by (Liu and Rubin 1994), the GEM algorithm pro-

posed by (Neal and Hinton 1998) and the 𝛼 -EM algorithm proposed by 

(Matsuyama 2003). (Jia 2013) applies the 𝛼-EM algorithm together with conju-

gate gradient method to the FA and shows a significant improvement in the speed.   

 

4.4 Expected Return 

The high frequency data usually have a stronger cross-sectional dependency 

than the low frequency one. This fact can be observed not only in the volatility but 

also in the expected returns or alphas. Thus the classical autoregressive (AR) 

models may have a better performance in the high frequency market. Let {𝑟𝑖} 
𝑖 = 1,2, … be a sequence of de-seasonal log returns equally spaced in time. The 

AR(p) model can be written as: 

𝑟𝑖 = ℎ0 + ℎ1𝑟𝑖−1 + ℎ2𝑟𝑖−2 +⋯+ ℎ𝑝𝑟𝑖−𝑝 + 𝑥𝑖 , 

where 𝑖 = 𝑝 + 1, 𝑝 + 2,…; ℎ0, ℎ1, …, ℎ𝑝 are called AR coefficients or impulse re-

sponse in electronic engineering and 𝑥𝑖 are often assumed to be i.i.d zero mean 

normally distributed noises. Given the information up to time 𝑖 − 1, the expecta-

tion of 𝑟𝑖, which is given by ℎ0 + ∑ ℎ𝑗𝑟𝑖−𝑗
𝑝
𝑗=1 , is the alpha prediction of the AR(p) 

model.  

The estimation of AR(p) model can be performed by the least squares method. 

Suppose that we have data samples with length 𝑁 > 𝑝, the least squares method 

solves the following optimization problem: 
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min
ℎ0,…,ℎ𝑝

∑ (𝑟𝑖 − ℎ0 −∑ℎ𝑗𝑟𝑖−𝑗

𝑝

𝑗=1

)

2

,

𝑁

𝑖=𝑝+1

 

which can be solved explicitly: 

ℎ̂ = (𝑅′𝑅)−1𝑅′𝑟, 
where 

𝑟 = (

𝑟𝑝+1
⋮
𝑟𝑁

), 

and 

𝑅 =

(

 

1 𝑟𝑝 𝑟𝑝−1 ⋯ 𝑟1
1 𝑟𝑝+1 𝑟𝑝 ⋯ 𝑟2
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑟𝑁−1 𝑟𝑁−2 ⋯ 𝑟𝑝)

  

The naïve least squares method is simple, but it is not the most numerically ef-

ficient approach in the estimation of AR(p). A better alternative called Burg’s 

method is usually considered a standard approach for estimating AR(p) systems. 

We refer readers to (Marple Jr 1987). Some software such as Matlab also provides 

build-in function for Burg’s algorithm.  

A generalization of the AR(p) model is so-called autoregressive moving aver-

age (ARMA) model. Similar as AR(p), the ARMP(p,q) model can be represented 

as  

𝑟𝑖 = ℎ0 +∑ℎ𝑗𝑟𝑗−𝑖

𝑝

𝑗=1

+∑𝑔𝑗𝑥𝑖−𝑗

𝑞

𝑗=1

+ 𝑥𝑖  

In fact one can show that ARMA(p,q) is also a special case of AR(∞) process. 

However methods like least squares or Burg’s algorithm cannot be applied to the 

estimation of ARMA(p,q) model. Instead the general maximum likelihood estima-

tor is the standard approach for fitting ARMA(p,q) with normally distributed re-

siduals 𝑥𝑖. The ARMA process often works together with GARCH model. In that 

case the estimations of ARMA and GARCH can be done separately. This ap-

proach is called quasi maximum likelihood (QMLE). A comprehensive introduc-

tion of the ARMA-GARCH type models can be found in (McNeil, Frey et al. 

2005). (Beck, Kim et al. 2013) apply the ARMA-GARCH model to intraday data 

with frequency ranged from 75 to 300 seconds; and discover the heavy-tailness in 

the residuals of the model.  

The financial data often has mean-reverting pattern. For example, the estimated 

ℎ1 of AR(p) model is usually negative. Roughly speaking, the scales of the rest 

parameters ℎ𝑗 (𝑗 > 1) are small comparing to ℎ1, and become smaller as 𝑗 increas-

es, since the impact of historical values to the present will diminish as time goes. 

However, this does not mean that ℎ𝑗 with large 𝑗 should be ignored. The aggrega-

tion of small impulse responds may have a strong impact to the prediction; since it 

contains information of long-term trend. (Sun, Rachev et al. 2008) find that the in-
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traday equity data may have long-range dependence, i.e. the decay of ℎ𝑗 with re-

spect to 𝑗 is very slow. (Kim 2015) applies an ARMA-GARCH model with frac-

tional heavy-tailed distributions to model high frequency data. Although neither 

ARMA(p,q) nor AR(p) processes can capture the long-range dependency of the 

data, one may approximate a long-range dependent time series by an AR(p) with 

large 𝑝 in a finite amount of time. However as the number of parameters increas-

es, the error of the least squares estimator or Burg’s method grows tremendously, 

due to the Cramér–Rao bound. Thus similar as the covariance matrix estimation, 

one may need some biased estimators like shrinkage. (Mullhaupt and Riedel 1998) 

impose a specific structure called triangular input balanced form on the AR pro-

cess. They show that the estimation error can be significantly reduced by adding 

small bias to the estimator. 

 

4.5 Duration 

Up to now we introduce how to transfer data into equal spaced series. However 

the frequency of the data would be reduced and certain information would be lost 

in the aggregation. The original data with irregular time stamps are called “ultra-

high frequency” data in (Engle 2000). Consider a sequence of ultra-high frequency 

data {(𝑡𝑖 , 𝑝𝑖)} where 𝑖 = 1,… , 𝑁, the number of trades that occur before time 𝑡 is 

given by 𝑁(𝑡) = sup{𝑖|𝑡𝑖 ≤ 𝑡, 𝑖 = 1,… , 𝑁}. The simplest way is to fit 𝑁(𝑡) by a 

homogeneous Poisson process, i.e. the probability that there 𝑘 events happen be-

tween 𝑡 and 𝑡 + Δ𝑡 is: 

𝑃(𝑁(𝑡 + Δ𝑡) − 𝑁(𝑡) = 𝑡) =
(𝜆Δ𝑡)𝑘 

𝑘!
exp(−𝜆𝛥𝑡), 𝑘 = 0,1,2, … 

where 𝜆 is the instantaneous arrival rate of an event: 

𝜆 = lim
Δ𝑡→0

𝑃(𝑁(𝑡 + Δ𝑡) − 𝑁(𝑡) ≥ 0)

Δ𝑡
 

The Poisson process implies that the durations Δ𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1 are i.i.d expo-

nentially distributed with constant rate 𝜆: 

𝑃(Δ𝑡 ≤ 𝑠) = 1 − 𝑒−𝜆𝑠 
However the Poisson process might be over simplify the problem. Similar as 

the volatility, duration exhibits periodicity and heteroskedasticity. (Engle 2000) 

shows that the duration of mid-quote prices has an n-shape curve in contrast to the 

volatility. The periodicity can be removed using the same approach in Section 4.1. 

The heteroscedasticity, however, contradicts to the assumption that 𝜆 is constant. 

(Engle and Russell 1998) propose an autoregressive conditional duration (ACD) 

model as follows: 

Δ𝑡𝑖 = 𝜙𝑖𝜖𝑖 
𝜙𝑖 = 𝜔 + 𝛼Δ𝑡𝑖−1 + 𝛽𝜙𝑖−1 

where 𝜖𝑖 are i.i.d positive random variables. The ACD model looks very similar to 

the GARCH model. The distribution of residuals 𝜖𝑖 is often set to be the exponen-

tial or Weibull distribution. It is clear that the instantaneous arrival rate 𝜆 of the 
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ACD model is not a constant. Simple calculation shows that given 𝜙𝑁(𝑡) and ex-

ponentially distributed 𝜖𝑖: 

𝜆(𝑡) =
1

𝜙𝑁(𝑡)
 

Similar as the GARCH model, the parameters of the ACD model can be fitted 

via QMLE, see (Engle and Russell 1998; Engle 2000). 

 

 

4.6 Scalable Parallel Algorithms on Supercomputers 

As we have seen, all of the computations in previous sections are based on high 

dimensional matrix operations. For example, multivariate least squares method is 

applied to fit volatility curves and AR models. Eigenvalues are important in esti-

mating the covariance matrix.  

Of these methods, matrix multiplication is the core problem as a basis for most 

of other methods such as least square, eigenvalue and matrix factorization. Matrix 

multiplication (MM) is the simplest yet most difficult problem in mathematics 

(Zhang and Gao 2015). The standard algorithm for MM is 𝑂(𝑛3) but in mathe-

matics, researchers never stop in pursuit of faster approached for multiplying ma-

trices. For example, Strassen reduced the computing complexity to 𝑂(𝑛2.8)  in 

1969 and another breakthrough is the Coppersmith-Winograd algorithm that per-

forms MM in 𝑂(𝑛2.4) operations. In addition to theoretical studies, the complex 

architectures of computing facilities have further escalated the difficulty for the 

MM implementation. For example, the task mapping in parallel computers and the 

task scheduling in hybrid CPU-GPU computers made the MM implementations 

even harder. In this regard, some data-oriented schedule paradigm is proposed and 

it has been applied to the MM problem on today’s high-performance computing 

facilities (Zhang, Liu et al. 2015). Of experiments, the best-practice matrix-

multiplication approach is found (Zhang and Gao 2015). Figure 6 compares the 

naïve and Strassen algorithms for tile-based matrix-matrix multiplication. 
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Figure 6: Comparing the naïve algorithm and Strassen algorithm for matrix-matrix mul-

tiplication 

 

Cholesky inversion method is to compute the inverse for a positive-definite ma-

trix. In finance, the covariance matrix is positive semidefinite. Cholesky inversion 

is more challenging than matrix multiplication and it consists of three successive 

steps: Cholesky factorization, inversion for lower triangular matrix and product of 

lower triangular matrices. A naïve approach is to perform three steps sequentially 

but its performance is very poor. To deliver better parallelism, one has to inter-

leave these steps by adhering to the complex data dependencies. This goal could 

be achieved through a thorough critical path approach (Tomov, Nath et al. 2010) 

or a dynamic data-oriented schedule approach (Zhang, Gao et al. 2015; Zhang, Liu 

et al. 2015). 

 

 

5. Portfolio Selection and Evaluation 

Data cleaning, aggregation and modeling can all be viewed as searching valua-

ble information from the massive data. The amount of data would be significantly 

reduced after each step. Expected return, volatility and other statistics are the gold 

extracted from raw ore. The final steps are developing trading ideas, constructing 

portfolios and testing strategies. Although data volume in this procedure is rela-
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tively small, there is a great need of computing speed from high frequency inves-

tors who want to execute their strategies faster than their opponents. In this section 

we review two different classes of strategies: Markowitz’s mean variance portfolio 

selection and on-line portfolio selection. The first one is relatively slow but mature 

and well developed. The second one is simple but fast which can be potentially 

applied to ultra-high frequency trading.  

 

5.1 Markowitz Portfolio Optimization with Transaction Costs 

Suppose that there are 𝑑 risky assets with expected return 𝜇 and covariance Σ. 

A self-financing portfolio is represented by a 𝑑-dimensional weight vector 𝑤 that 

satisfies ∑ 𝑤𝑖
𝑑
𝑖=1 = 1. The well-known Markowitz portfolio states that a rational 

risk averse investor wants to maximize the utility function: 

max
𝑤
𝑤′𝜇 −

𝜆

2
𝑤′Σ𝑤 

subject to: 𝑒′𝑤 = 1 

where 𝑒 is a 𝑑-dimensional vector with all ones,𝑤′𝜇 is the expected return of the 

portfolio, 𝑤′Σ𝑤 is the variance of the portfolio and 𝜆 > 0 reflects the degree of 

risk aversion. In high frequency market, the log return and the real return are very 

close, so 𝑤′𝑟 with log return 𝑟 can be an approximation of the real portfolio return 

in a short period. Thus 𝜇  and Σ in the optimization problem can be log return 

based mean and covariance. But this would not be true for long-term prediction. 

The above optimization problem can be solved explicitly. The optimal portfolio 

weight together with its expectation and variance changes as the risk aversion pa-

rameter 𝜆 varies. By plotting the expected return against the variance with all pos-

sible 𝜆 then we obtain the famous efficient frontier.  

There are many variations of the Markowitz mean-variance portfolio strategy. 

One can replace the variance term 𝑤′Σ𝑤 by other risk measures like the value-at-

risk (VaR), conditional value-at-risk (CVaR) or maximum drawdown. These risk 

measures are often considered to be superior than the variance since they are able 

to capture the tail-risk. (Rockafellar and Uryasev 2000) show that the mean-CVaR 

problem can be transferred to a linear programming with a higher dimension. 

(Chekhlov, Uryasev et al. 2000) propose a similar approach for drawdown 

measures. However, the trade-off of these approaches is that the dimension of the 

problem increases tremendously by introducing auxiliary variables. CVaR for ex-

ample, is often calculated via Monte Carlo; and the dimension of the auxiliary var-

iables in the equivalent linear programming is the same as the number of Monte 

Carlo scenarios. Regular computers may fail to deal with this kind of problem ef-

ficiently due to the memory limitation. Under some special cases the mean-risk 

problem can be solved easily. For example, (Shi and Kim 2015) show that the di-

mension of any mean-risk problem with coherent risk measures and a subclass of 

normal mixture distributions can be reduced to two. In general, however, the 

mean-risk problem is usually very hard to solve.  

https://www.researchgate.net/publication/228609755_Optimization_of_Conditional_Value-At-Risk?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/228205705_Portfolio_Optimization_with_Drawdown_Constraints?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==


24  

The most important problem within the above strategies is that they assume no 

transaction cost. Transaction cost is usually ignored in the low frequency finance, 

but it grows dramatically as the trading frequency increases. Broker commissions, 

exchange fees and taxes are all major sources of the transaction cost. But the most 

significant one is the portfolio turnovers. For example, if the current best ask price 

of equity is $10, it does not mean you are able to buy 500 shares at $5000. The 

size of the best asks might just be 200 shares. The next best ask price might be 

$10.1 with 300 shares. Overall the average price you paid grows almost propor-

tionally as objective shares increases. Thus a high frequency trader may not 

choose to change his current position even when he observes a signal.  

Even you have a perfect prediction of the expected returns and variance, the 

optimal mean-variance portfolio may be completely different with the current 

ones; and the profit would be dwarfed by the huge transaction cost in rebalancing 

the portfolio. Thus a constraint on the portfolio turnover is necessary in portfolio 

optimization problems. Suppose that your current portfolio weight is given by a 𝑑-

dimensional vector 𝑤̃; then the turnover is usually modeled by the 1-norm of the 

weight change: 

‖𝑤 − 𝑤̃‖1 =∑|𝑤𝑖 − 𝑤̃𝑖|

𝑑

𝑖=1

 

Thus the mean-variance problem with transaction cost can be rewritten as: 

max
𝑤
𝑤′𝜇 −

𝜆

2
𝑤′Σ𝑤 − 𝑐‖𝑤 − 𝑤̃‖1 

subject to: 𝑒′𝑤 = 1 

where 𝑐 > 0 is the degree of the turnover. The object function is neither quadratic 

nor smooth at the point 𝑤̃. But we are able to convert it to a quadratic program-

ming problem: 

max
𝑣
𝑣′𝜇̃ −

𝜆

2
𝑣′Σ̃𝑣 

subject to: 𝑒̃′𝑣 = 0, 𝑣 ≥ 0 

where 

𝜇̃ = (
𝜇 − 𝜆𝑤̃′Σ + 𝑐𝑒
−𝜇 + 𝜆𝑤̃′Σ + 𝑐𝑒

), 

Σ̃ = (
Σ −Σ
−Σ Σ

), 

and 𝑒̃ is a 2𝑑 dimensional vector with first 𝑑 elements are 1 and the rest are -1. 

The optimal portfolio weight 𝑤∗ of the mean-variance problem with transaction 

cost can be represented by the optimal solution of the above problem 𝑣∗: 
𝑤∗ = 𝑤̃ + [𝐼, −𝐼]𝑣∗ 

where 𝐼 is the 𝑑-dimensional identity matrix. One can show that the first 𝑑 ele-

ments of 𝑣∗ are the positive parts of the weight change, and the rest 𝑑 elements are 

the negative parts of the weight change. If 𝑣𝑘
∗  >0 for some 𝑘=1,… , 𝑑 , then we 

must have 𝑣𝑑+𝑘
∗ = 0, otherwise 𝑣∗ will not be the optimal solution. The quadratic 

programming has been thoroughly studied in modern convex optimization theory. 

Classical algorithm includes the interior-point method and trust-region method, 
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see (Nocedal and Wright 2006). Note that Σ̃ is not of full rank, this is caused by 

the non-smoothness of the original problem. One may shrink the eigenvalues of Σ̃ 

a bit to make the problem strictly convex. Thus in practice we usually get an 

suboptimal solution 𝑤∗. If the value of the object function on 𝑤∗ does not exceed 

𝑤̃′𝜇 −
𝜆

2
𝑤̃′Σ𝑤̃ then we will keep the portfolio unchanged since the potential bene-

fit of changing the portfolio does not cover the transaction cost. 

 

5.2 On-line Portfolio Selection 

In this section we consider a portfolio allocation framework that is different 

from the Markowitz’s theory. Let 𝑟𝑖,𝑡  where 𝑖 = 1,2, … , 𝑑, 𝑡 = 1,2, … , 𝑇 be the log 

return of the 𝑖 -th asset at time 𝑡 , 𝑥𝑖,𝑡 = exp(𝑟𝑖,𝑡)  be the price ratio, 𝑥𝑡 =

(𝑥1,𝑡 , … , 𝑥𝑑,𝑡)′ be the price ratio vector of 𝑑 assets and 𝑤𝑡 = (𝑤1,𝑡 , … , 𝑤𝑑,𝑡)′ be the 

portfolio weights. We assume that the portfolio is long-only; and let 𝒲 = {𝑤 ∈
ℝ𝑑  𝑠. 𝑡. ∑ 𝑤𝑖

𝑑
𝑖=1 = 1,𝑤𝑖 ≥ 0} be the universe of all long-only portfolio weights. 

Suppose that the initial wealth is 𝑆0, then the value of a portfolio with strategies: 

𝑤1, 𝑤2, … , 𝑤𝑡 ∈ 𝒲 is given by: 

𝑆𝑡(𝑤1, … , 𝑤𝑡|𝑥1, … , 𝑥𝑡) = 𝑆0∏∑𝑤𝑖,𝑠𝑥𝑖,𝑠

𝑑

𝑖=1

𝑡

𝑠=1

 

A general on-line portfolio selection framework proposed by (Li and Hoi 2014) 

is as follows: 

 

ALGORITHM: On-line portfolio selection 

Input: 𝑥1, … , 𝑥𝑇: Historical market sequence 

Output: 𝑆𝑇: Final cumulative wealth 

Initialize 𝑆0 and 𝑤0 

for 𝑡 = 1,… , 𝑇 do 

    Portfolio manager computes a portfolio 𝑤𝑡; 
    Market reveals the market price ratio 𝑥𝑡; 
    Updates cumulative wealth 𝑆𝑡 = 𝑆𝑡−1𝑤𝑡 ′𝑥𝑡; 
    Portfolio manager updates his/her online portfolio selection rules; 

end 

 

Here are several examples of on-line portfolio strategies: 

 

5.2.1 Buy and hold strategy 

The buy and hold strategy simply does not trade anymore once the initial port-

folio weight 𝑤0 is given. The dynamic of its portfolio weight is given by: 

https://www.researchgate.net/publication/285906939_Numerical_optimization?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
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𝑤𝑖,𝑡 =
𝑤𝑖,𝑡−1𝑥𝑖,𝑡−1

∑ 𝑤𝑗,𝑡−1𝑥𝑗,𝑡−1
𝑑
𝑗=1

 

and the cumulative wealth is: 

𝑆𝑡(𝑤1, … , 𝑤𝑡|𝑥1, … , 𝑥𝑡) = 𝑆0  ∑𝑤𝑖,0∏𝑥𝑖,𝑠

𝑡

𝑠=1

𝑑

𝑖=1

 

 

5.2.2 Constantly rebalanced strategy 

In contrast to the buy and hold strategy, the constantly rebalanced strategy is to 

keep rebalancing the portfolio such that 𝑤0 = 𝑤1 = ⋯ = 𝑤𝑡 . Thus the cumulative 

wealth is: 

𝑆𝑡(𝑤1, … , 𝑤𝑡|𝑥1, … , 𝑥𝑡)  = 𝑆0  ∏∑𝑤𝑖,0𝑥𝑖,𝑠

𝑑

𝑖=1

𝑡

𝑠=1

 

It can used to replicate the movements of a certain market index. Constantly 

rebalance and buy and hold are two naïve trading strategies that are often used as 

benchmarks. 

 

5.2.3 Minimax strategy 

Let 𝑦1 , … , 𝑦𝑇  be a sequence of integers ranged from 1 to 𝑑. Given a sequence 

of static strategies: 𝑣1, … , 𝑣𝑇 ∈ 𝒲, i.e. 𝑣𝑡 does not depend on any information pri-

or to 𝑡. Then we can define a probability density function of 𝑦1, … , 𝑦𝑇: 

𝑝𝑇(𝑦1, … , 𝑦𝑇) =

sup
𝑣1,…,𝑣𝑇∈ 𝒲

∏ 𝑣𝑦𝑡,𝑡
𝑇
𝑡=1

∑ ⋯∑ sup
𝑣∈ 𝒲

∏ 𝑣𝑍𝑡,𝑡
𝑇
𝑡=1

𝑑
𝑧𝑇=1

𝑑
𝑧1=1

 

The marginal density function of 𝑦1, … , 𝑦𝑡  for some 𝑡 < 𝑇 is given by: 

𝑝𝑡(𝑦1, … , 𝑦𝑡) = ∑ ⋯

𝑑

𝑧𝑡+1=1

∑ 𝑝𝑇(𝑦1 , ⋯ , 𝑦𝑡 , 𝑧𝑡+1, … , 𝑧𝑇)

𝑑

𝑧𝑇=1

 , 

Given a sequence of price ratio 𝑥1, … , 𝑥𝑡−1, the minimax strategy on 𝑡 is defined 

as: 

𝑤𝑖,𝑡 =
∑ ⋯𝑑
𝑦1=1

∑ 𝑝𝑡(𝑦1, … , 𝑦𝑡−1, 𝑖) ∏ 𝑥𝑦𝑠,𝑠
𝑡−1
𝑠=1

𝑑
𝑦𝑡−1=1

∑ ⋯𝑑
𝑦1=1

∑ 𝑝𝑡−1(𝑦1, … , 𝑦𝑡−1)∏ 𝑥𝑦𝑠,𝑠
𝑡−1
𝑠=1

𝑑
𝑦𝑡−1=1

, 

 

The minimax strategy is the theoretical best strategy in terms of minimizing the 

worst-case logarithmic wealth ratio: 

sup
𝑥1,…,𝑥𝑇

sup
𝑣1,…,𝑣𝑇∈ 𝒱

log
𝑆𝑇(𝑣1, … , 𝑣𝑇|𝑥1, … , 𝑥𝑇)

𝑆𝑇(𝑤1, … , 𝑤𝑇|𝑥1, … , 𝑥𝑇)
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This ratio measures the difference between the strategy 𝑤1 , … , 𝑤𝑇 and the best 

static strategy with the knowledge of future under the worst case scenario. For de-

tailed proof and the deduction of the minimax strategy we refer readers to (Cesa-

Bianchi and Lugosi 2006).  

 

5.2.4 Universal portfolio strategy 

The minimax strategy is the theoretical best on-line strategy, but it is hard to 

achieve in practice. The computation of the densities 𝑝1 , … , 𝑝𝑇 is often numerical-

ly intractable in real market. (Cover 1991) proposes a computationally efficient 

strategy called universal portfolio: 

 

𝑤𝑖,𝑡 =
∫ 𝑢𝑗𝑆𝑡−1(𝑢, … , 𝑢|𝑥1, … , 𝑥𝑡−1)𝜇(𝑢)𝑑𝑢𝑤

∫ 𝑆𝑡−1(𝑢, … , 𝑢|𝑥1, … , 𝑥𝑡−1)𝜇(𝑢)𝑑𝑢𝑤

 

 

where 𝑆𝑡−1(𝑢, … , 𝑢|𝑥1, … , 𝑥𝑡−1)  is the cumulative wealth of a constantly re-

balanced strategy 𝑢; and 𝜇(𝑢) is a density function that can be viewed as a prior 

distribution of the portfolio weight. At time 𝑡 the strategy updates the distribution 

of weight based on the performance of all possible constantly rebalanced strate-

gies. The new strategy is just the expectation of the updated distribution. (Cover 

and Ordentlich 1996) show that the worst-case logarithmic wealth ratio of the uni-

versal portfolio strategy has an upper bound that increases at the speed of 

𝑂(log 𝑇) as 𝑇 increases. 

 

5.2.5 Exponential gradient (EG) strategy 

The universal portfolio strategy is more practical than the minimax strategy, 

but still computationally intractable under high dimension; since it involves the 

calculation of 𝑑 dimensional integrals. A simple strategy called the EG strategy 

proposed by (Helmbold, Schapire et al. 1998) updates the portfolio weights as fol-

lows: 

 

𝑤𝑖,𝑡 =

𝑤𝑖,𝑡−1 exp (
𝜂𝑥𝑖,𝑡−1

∑ 𝑤𝑖,𝑡−1𝑥𝑖,𝑡−1
𝑑
𝑖=1

)

∑ 𝑤𝑗,𝑡−1 exp (
𝜂𝑥𝑗,𝑡−1

∑ 𝑤𝑖,𝑡−1𝑥𝑖,𝑡−1
𝑑
𝑖=1

)𝑑
𝑗=1

 

 

The EG strategy is a gradient-based forecaster since the term 𝑥𝑖,𝑡−1/

∑ 𝑤𝑖,𝑡−1𝑥𝑖,𝑡−1
𝑑
𝑖=1  can be viewed as the gradient of logarithmic loss 

− log∑ 𝑤𝑖,𝑡−1𝑥𝑖,𝑡−1
𝑑
𝑖=1 . The upper bound of the worst-case logarithmic wealth ra-

https://www.researchgate.net/publication/2459640_On-Line_Portfolio_Selection_Using_Multiplicative_Updates?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/3078957_Universal_Portfolios_with_Side_Information?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/3078957_Universal_Portfolios_with_Side_Information?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==
https://www.researchgate.net/publication/2601475_Universal_Portfolios?el=1_x_8&enrichId=rgreq-ad79f6cc11988f77effa1c74dfa8cace-XXX&enrichSource=Y292ZXJQYWdlOzMwNTI3OTU2MztBUzozOTQ0NTU0MzA1MTY3MzdAMTQ3MTA1NjkxMTU4OA==


28  

tio of the EG strategy grows with 𝑂(√𝑇); but in terms of the dimension 𝑑 it grows 

only with 𝑂(√log 𝑑) comparing to the linear growth of universal portfolio.  

 

 

The above on-line strategies are all based on the assumption that there is no 

transaction cost. (Györfi and Vajda 2008) propose an on-line portfolio allocation 

framework with transaction costs. Suppose that at time 𝑡 − 1 the net wealth of the 

portfolio is given by 𝑁𝑡−1. Given a new strategy 𝑤𝑡  and price ratio 𝑥𝑡  the gross 

wealth at time 𝑡 is given by: 

𝑆𝑡 = 𝑁𝑡−1∑𝑤𝑖,𝑡𝑥𝑖,𝑡

𝑑

𝑖=1

 

However, after the rebalancing, the wealth is reduced to 𝑁𝑡 ≤ 𝑆𝑡  because of the 

transaction costs. Before the rebalancing the weights of each asset are given by: 

 

𝑤̃𝑖,𝑡 =
𝑤𝑖,𝑡𝑥𝑖,𝑡

∑ 𝑤𝑗,𝑡𝑥𝑗,𝑡
𝑑
𝑗=1

 , 𝑖 = 1, … , 𝑑. 

 

In the previous section we simply use ‖𝑤𝑡+1 − 𝑤̃𝑡‖1 to approximate the trans-

action cost. A more precise approximation should be: 

 

𝐶𝑡 = 𝑐𝑠∑max{𝑤̃𝑖,𝑡𝑆𝑡 −𝑤𝑖,𝑡+1𝑁𝑡 , 0} + 𝑐𝑏

𝑑

𝑖=1

∑max{𝑤𝑖,𝑡+1𝑁𝑡 − 𝑤̃𝑖,𝑡𝑆𝑡 , 0}

𝑑

𝑖=1

 

 

where 𝑐𝑠 and 𝑐𝑏 are the per dollar transaction costs of selling and buying respec-

tively. Using the fact that 𝑁𝑡 = 𝑆𝑡 − 𝐶𝑡 we obtain the following equation: 

 

1 = 𝜌𝑡 + 𝑐𝑠∑max{𝑤̂𝑖,𝑡 − 𝑤𝑖,𝑡+1𝜌𝑡 , 0}

𝑑

𝑖=1

+ 𝑐𝑏∑max{𝑤𝑖,𝑡+1𝜌𝑡 − 𝑤̂𝑖,𝑡 , 0}

𝑑

𝑖=1

 

 

from with we can solve 𝜌𝑡 = 𝑁𝑡/𝑆𝑡. Thus instead of 𝑆𝑡 we obtain a sequence of 

net wealth: 

𝑁𝑡 = 𝑁0∏𝜌𝑠∑𝑤𝑖,𝑠𝑥𝑖,𝑠

𝑑

𝑖=1

𝑡

𝑠=1

 

 

The on-line portfolio allocation with transaction costs can be summarized as: 

 

ALGORITHM: On-line portfolio selection with transaction costs 

Input: 𝑥1, … , 𝑥𝑇: Historical market sequence, transaction costs 𝑐𝑏 and 𝑐𝑠 
Output: 𝑁𝑇: Final cumulative net wealth 
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Initialize 𝜌0, 𝑆0 and 𝑤0 

for 𝑡 = 1,2, … , 𝑇 do 

    Portfolio manager computes a portfolio 𝑤𝑡; 
    Updates the net wealth 𝑁𝑡−1 = 𝜌𝑡−1𝑆𝑡−1 after rebalancing; 

    Market reveals the market price ratio 𝑥𝑡; 
    Updates the gross wealth 𝑆𝑡 = 𝑁𝑡−1𝑤𝑡

′𝑥𝑡; 
    Portfolio manager updates his/her online portfolio selection rules; 

end 

 

For more on-line portfolio selection strategies we refer readers to (Li and Hoi 

2014) that provide a review of recent published techniques including some pattern 

recognition and machine learning strategies. 

 

6. The Future 

The rise of big data in financial industry has already been dramatic in the past 

decade. However we have good reason to believe that it is just a start; and the 

adoption of big data technology together with quantitative tools still has a long 

way to go. Despite of the rapid growth of high frequency industry and systematic 

trading funds, a number of traditional financial businesses still live in the small da-

ta era. A lot of economic data that they collected are in weekly, monthly or even 

quarterly based. Financial analysts may spend several hours on small amount of 

fundamental data of a single firm; while a large percentage of the work could be 

done automatically by machine. In addition, there are also more hidden errors in 

the data that are very difficult to be detected manually, as the information from the 

data providers such as Bloomberg and Factset grow tremendously. Thus the 

chances of operational risk made by human analyst who does not have the support 

of advanced technology increases simultaneously.  

The most widely used data analyze tool in many financial firms is Microsoft 

Excel together with Visual Basic for Applications (VBA), which is very ineffi-

cient to deal with large datasets. On the side, although there is a number of profes-

sional data analyzing technologies that can process big data in a great efficiency, 

most of them are not user-friendly and fail to provide a comprehensive visualiza-

tion of the information for the financial professionals with little technological or 

mathematical background.  Thus the future of big data in finance is likely to be 

more client-oriented and personalized. This requires a closer connection between 

the engineers, scientists, financers and bankers (Zhang, Yu et al. 2016). 

Even in the rapid growing high frequency industry, the technology and theory 

is far from mature. A unified influential framework such as the classical Black 

Scholes theory is not discovered yet in high frequency finance. Here we list some 

potential research topics that might be crucial for the development of quantitative 

finance.  
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6.1 Advanced statistics and information theory 

In contrast to the classical statistics based on unbiased statistics such as maxi-

mum likelihood estimator, biased estimators, shrinkage, Bayesian theory and prior 

information are getting more and more emphasis in modern statistics in finance. 

Financial data is highly noisy and inconsistent. And this property would just be-

come more significant as the data size grows bigger. The behavior of financial 

market also changes over the time. For example, the pattern of some financial in-

struments is completely changed by the crisis on 2009. New phenomena like the 

flash crash appears as new technologies are introduced to the market. Simple 

models fail to capture these changes, and complicated advanced models usually 

introduce large estimation errors. That is the reason for which the biased estima-

tors often have a better performance than the unbiased ones.  

However introducing prior information naively could be dangerous. How to 

shrink the estimators of a distribution? What is the best Bayesian prior? What is 

the correct way to parameterize a model? All of which are challenging questions 

in practice. A tool that can address these problems is the information geometry 

developed by (Amari and Nagaoka 2007). By linking probability distributions to 

differential geometry one can get a better intuition of statistical models and tests. 

For example, (Choi and Mullhaupt 2015) investigate the linear time series model 

on Kähler manifold and construct a Bayesian prior superior than the traditional 

Jeffers’ prior. Further researches in different financial econometrics can potential-

ly improve the current models and statistic tests.  

 

6.2 Combination of machine learning, game theory and statistics 

Markowitz portfolio theory is insightful; but it is clearly not the best strategy 

that an investor can choice. Given a prediction model and a certain investment pe-

riod, the theoretical best strategy is provided by dynamic programming, which is 

numerically unachievable in finance. Machine learning theory provides feasible 

algorithms that can approximate a dynamic programming strategy. Techniques 

such as deep learning achieved significant success in different areas such as Chess 

and Go recently. However unlike the board games, financial market exhibits 

strong uncertainty; and the information available to each participant is incomplete. 

Thus machine-learning theory based on modern statistics is necessary for decision 

making in finance. The on-line portfolio strategies introduced in section 5.2 are 

just simple examples of the theory. These strategies do not consider stylized facts 

like mean-reverting of the market, and ignore the transaction costs which are cru-

cial in high frequency trading. Utilizing additional information and signals from 

the market is an open topic in this area, (Li and Hoi 2014).  

In addition high frequency industry is highly competitive. Buying and selling 

assets in a short amount of time is approximately a zero-sum game, i.e. someone’s 

gain leads to someone’s loss. Even for the low frequency investors the high fre-

quency traders introduce higher transaction costs that can affect on the long-term 
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profit. Thus an investor may consider opponents’ actions and the impact of his 

strategy to the market before executing his strategy. Thus game theory may pro-

vide a deeper insight to the high frequency trading than the dynamic programming 

of a certain utility function. 

 

6.3 Efficient algorithms in linear algebra and convex optimization 

Linear algebra and convex optimization are the footstones for modern data 

analysis and financial engineering. Any quantitative model in finance would not 

be practical without basic tools in linear algebra and optimization, such as matrix 

inversion, SVD, Cholesky decomposition, QR decomposition, eigenvalue prob-

lem, linear and quadratic programming. While most classical algorithms in linear 

algebra and convex optimization were well developed in the last century, the need 

of faster and more accurate algorithms keeps increasing as new technologies and 

new applications appear. Frist, a number of matrices in financial applications are 

sparse or structured. Thus algorithms specificity designed for these matrices can 

be more efficient than these standard approaches. Second of all, the novel hetero-

geneous platforms including GPU and MIC (Zhang and Gao 2015) has further es-

calated the computational complexities, although they have improved the compu-

ting performance. 

 

 

7. Conclusion 

In this chapter we review the big data concept in quantitative finance. By con-

sidering high frequency data as an example, we introduce the basic data cleaning 

and aggregation approaches, quantitative modeling, portfolio allocation and strat-

egies, which are summarized by Figure 7. 

The inverted pyramid structure illustrated the change of data size after each 

step. The three topics are also related to the 3’Vs in Big Data. First of all, raw data 

is voluminous. Processing and cleaning them requires efficient I/O, ranking and 

searching techniques. Second, we briefly introduce the typical econometric mod-

els but there exist a variety of quantitative models with different degrees of com-

plexity. Different matrix operating and optimization algorithms are needed to deal 

with different types of the models. Finally, the velocity of model estimation and 

portfolio allocation is equally important for algorithm trading firms. Even milli-

seconds’ difference in speed could make a huge difference for some high frequen-

cy investors. However the framework in Figure 7 is just a coarse summarization of 

the world of quantitative finance. More researches in market microstructure would 

be launched in the near future, as more types of data get involved. Appearance of 

the next Black Scholes theory is just a matter of time. 
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Figure 7: Inverted Pyramid Structure of Quantitative Data Analysis in Finance 
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